Cent Nerv Syst Agents Med Chem. 2025 Jul 28. doi: 10.2174/0118715249352790250711092129. Online ahead of print.
ABSTRACT
Recent studies have shown that plant-derived flavonoids may be useful in the treatment of diabetes. Plants in the Moraceae family are commonly known to contain the bioflavonoid morin. Its pharmacological properties include anti-inflammatory, anti-tumor, anti-diabetic, cardioprotective, neuroprotective, and nephroprotective properties. An organic dithiol molecule called alpha-lipoic acid is essential to mitochondrial bioenergetic functions. Its antioxidant properties have led to significant research in the treatment of diabetic conditions. Diabetic neuropathic pain is associated with poor glucose regulation and metabolic abnormalities, specifically oxidative stress (OS) and inflammation. Many mediators and signaling pathways play a crucial role in the development and pathogenesis of diabetic neuropathic pain, including the polyol pathway, advanced glycation end products, glutamate pathway, trophic factors, activation of channels, inflammation, and OS. Morin is useful in controlling blood sugar levels and lowering the problems associated with diabetes, according to studies conducted in a variety of in vitro and in vivo studies. Alpha-lipoic acid (ALA) is a naturally occurring chemical that is necessary for the function of specific enzymes involved in mitochondrial and oxidative metabolism. Dihydrolipoic acid (DHLA), the reduced form of ALA, is thought to have a variety of biological activities, including the reduction of oxidized forms of other agents, including vitamin E and C, metal chelation, and modulation of signal transduction of several pathways (insulin). With its antioxidant properties and ability to scavenge reactive oxygen species, ALA may be able to inhibit the oxidative stress-inflammation pathways that are triggered in diabetic neuropathy. Thus, in this paper, we studied the impact of dietary flavonoid morin and alpha lipoic acid on the molecular mechanism causing major diabetic problems.
PMID:40735984 | DOI:10.2174/0118715249352790250711092129