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Metabolomic alterations in human 
cancer cells by vitamin C-induced 
oxidative stress
Megumi Uetaki1,2, Sho Tabata1,2, Fumie Nakasuka1,3, Tomoyoshi Soga1,2,3 & 
Masaru Tomita1,2,3

Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer 
therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, 
the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic 
changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer 
cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic 
profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of 
vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle 
were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate 
(ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment 
with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced 
cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD 
treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C 
inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death.

High-dose vitamin C treatment has a controversial history as a potential chemotherapeutic agent for 
cancer treatment1. A number of previous reports have suggested that high-dose vitamin C has antican-
cer effects2,3 while in other studies, it has shown no benefits in patients with cancer4,5. In view of these 
controversies, vitamin C treatment has recently been re-evaluated as a potential cancer therapy6–10. These 
analyses have revealed that high-dose vitamin C is more cytotoxic to cancer than it is to normal cells11. 
Moreover, vitamin C induces death of various types of cancer cells including mesothelioma, pancreatic, 
and leukemia cells10,12,13. High-dose vitamin C suppressed tumor growth in animal models and tissue 
culture studies10,12 and, therefore, may indeed have applications as a novel treatment for various cancers.

High-dose vitamin C kills cancer cells by acting as a pro-drug, which delivers hydrogen peroxide 
(H2O2)8,10. Increased levels of reactive oxygen species (ROS) including H2O2 are thought to play an 
important role in the initiation and progression of cancer. Excessive levels of ROS are known to cause 
cellular damage including senescence via activation of protein kinase Cδ  (PKCδ )11,14 and the release of 
cytochrome c from the mitochondria, leading to apoptosis15,16. Moreover, cellular ROS levels affect the 
redox status and metabolism17. H2O2 can change the ratio of oxidized glutathione (GSSG) and reduced 
(GSH) glutathione to a more oxidized state since H2O2 is reduced to water (H2O) by glutathione perox-
idase (GPx)18. Previous reports also showed that vitamin C treatment induced cytotoxicity by adenosine 
triphosphate (ATP) depletion in some cancer cells6,12,19. Therefore, vitamin C-induced H2O2 may alter 
intracellular metabolism in cancer cells by disrupting the redox balance. However, the effects of vitamin 
C on metabolism, including glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate 
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pathway (PPP), have not been clarified. Furthermore, the biological significance of vitamin C-induced 
metabolic alterations is still unknown.

Therefore, in this study, we sought to determine the effects of vitamin C on cancer cell metabolism 
using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS).

Results
High-dose vitamin C-induced cytotoxicity in cancer cells. High-dose vitamin C has been 
reported to show significant anticancer effects in vitro and in vivo6,8. To confirm the effects of vita-
min C on the survival of A431, Panc-1, HeLa, HT29, and MCF7 cells, we examined cell viability using 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results showed that 
cell viability was decreased following exposure to high concentrations of vitamin C (3 or 10 mM) in 
all cancer cell lines (Fig. 1a). The HT29 cells were the least sensitive to vitamin C with a half-maximal 
inhibitory concentration (IC50) of 10 mM or more, followed by Panc-1, A-431, HeLa, and MCF7 cells 
(IC50, 2.4 mM). These data suggests that high-dose vitamin C induced cytotoxic effects in cancer cells, 
albeit with varying efficacies.

Previous studies have reported that high-dose vitamin C induces H2O2
6,7,8,12. Therefore, we assessed 

the oxidative stress response in MCF7 cells treated with vitamin C by examining the expression of 
hemeoxygenase-1 (HO-1), a cellular oxidative stress marker, using quantitative real-time polymerase 
chain reaction (qPCR). HO-1 mRNA level in MCF7 cells significantly increased by vitamin C and 
H2O2, and this effect was suppressed by treatment with the antioxidant N-acetylcysteine (NAC, Fig. 1b). 
Furthermore, we investigated whether vitamin C induced cell death by generating H2O2 in MCF7 and 

Figure 1. Effects of vitamin C-induced hydrogen peroxide (H2O2) on viability of cancer cells. (a) Cancer 
cells were treated with vitamin C for 2 h, washed, and cultured for an additional 46 h in DMEM in the 
absence of vitamin C. Cell viability was determined using MTT assays. IC50 values indicate the concentration 
of vitamin C that inhibited survival by 50%, as determined by MTT assays. (b) Effects of vitamin C on HO-
1 expression in MCF7 cells. Cells were treated with vitamin C (1 mM), NAC (10 mM), and H2O2 (1 mM) for 
24 h. Expression levels of HO-1 mRNA were measured using qPCR. (c) Suppressive effects of antioxidants 
NAC and GSH on vitamin C-induced cytotoxicity in MCF7 cells. Cell viability was determined using MTT 
assays in MCF7 cells treated without or with vitamin C and antioxidants. Data are presented as means ±  SDs 
from triplicate experiments, **P <  0.01.
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HT29 cells. The antioxidants NAC and GSH attenuated the vitamin C-induced cytotoxicity in these cells 
(Fig. 1c), indicating that vitamin C-induced oxidative stress led to cancer cell death.

Metabolomic profiles of MCF7 cells treated with vitamin C. Next, we explored the effects of 
vitamin C on the metabolomic profile of MCF7 cancer cells using CE-TOFMS. The results revealed that 
following exposure to cytotoxic concentrations of vitamin C (≥ 1 mM) the levels of various metabolites 
were obviously altered in the MCF7 cells. Our analysis specifically revealed that the levels of the metab-
olites associated with the energy metabolism pathways examined, including those upstream of glycolysis, 
pentose phosphate pathway (PPP), and partial TCA cycle (citrate and cis-aconitate), were increased by 
the high-dose vitamin C (Fig.  2a). Conversely, the levels of metabolites downstream of glycolysis and 

Figure 2. Vitamin C-induced metabolic alterations in MCF7 cells. (a) Metabolic alterations in glycolysis 
and the TCA cycle induced by vitamin C. MCF7 cells were incubated in DMEM without or with vitamin 
C, and metabolites levels were measured using CE-TOSMS. Colors of metabolites on heatmap indicate 
significant differences (red, upregulated; green, downregulated). Bar graphs indicate fold changes relative to 
control sample (None). (b) Effects of vitamin C on levels of AMP, ADP, ATP, GMP, GDP, GTP, and adenylate 
energy charge. Bar graphs indicate fold changes relative to control sample (None). Adenylate energy charge 
calculation: (ATP +  0.5 ×  ADP)/(ATP +  ADP +  AMP). (c) Effects of vitamin C on levels of GSH and GSSG 
and GSH:GSSG ratio. Bar graphs show relative metabolite levels compared to control (None). Data are 
presented as means ±  SD of triplicate experiments, *P <  0.05, **P <  0.01. ND, not detected.
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the TCA cycle with the exception of citrate and cis-aconitate were decreased. ATP concentrations and 
adenylate energy charges were also decreased in a coordinated manner (Fig. 2b). These findings suggest 
that the high-dose vitamin C blocked the energy flux in glycolysis and the TCA cycle and consequently 
inhibited ATP production. Next, we examined whether the vitamin C-induced oxidative stress influenced 
the GSH redox balance. The levels of GSSG and GSH in the MCF7 cells were increased and decreased, 
respectively by vitamin C. In addition, the GSH/GSSG ratio was decreased at cytotoxic vitamin C con-
centrations and this effect was likely mediated by the associated generation of H2O2 generation, which 
may have affected the redox status of GSH (Fig. 2c). Furthermore, levels of amino acids, including Phe, 
Leu, Val, Ile, Lys, Trp, Ala, Tyr, Asp, and Arg, in MCF7 cells were increased following vitamin C treat-
ment (Supplementary Figure 1A). The effects of cytotoxic concentrations of vitamin C on the metabo-
lomic profiles of the HT29 cells were similar (MCF7 cells ≥ 1 mM, HT29 cells 10 mM, Supplementary 
Figure 2A–D).

Effects of NAC on vitamin C-dependent reduction in energy metabolism in MCF7 cells. To 
examine whether the high-dose vitamin C-induced H2O2 inhibited energy metabolism, we analyzed 
the metabolomic profiles of MCF7 cells treated with vitamin C and the antioxidant NAC. The results 
revealed that most of the vitamin C-induced metabolic changes in glycolysis, the TCA cycle, and the 
PPP were abolished by NAC treatment (Fig. 3a). In addition, ATP concentrations and adenylate energy 
charges were restored more by cotreatment with NAC than with vitamin C treatment alone (Fig.  3b). 
Interestingly, the metabolite profiles observed following vitamin C treatment were similar to those fol-
lowing H2O2 treatment (Fig.  3a). The changes in amino acid levels induced by vitamin C were also 
suppressed by NAC (Supplementary Figure 1B). These results suggest that vitamin C modulated energy 
metabolism by generating H2O2.

Vitamin C-induced H2O2 depleted nicotinamide adenine dinucleotide (NAD) in MCF7 cells. We 
found that vitamin C caused metabolic alterations in glycolysis and depleted ATP in MCF7 and HT29 
cells (Fig. 2a,b, Supplementary Figure 2A and 2B). Intriguingly, the levels of the metabolites upstream of 
glycolysis in the MCF7 and HT29 cells were augmented following treatment with vitamin C while those 
downstream were reduced (Fig.  2a and Supplementary Figure 2A). Analysis of the metabolic profiles 
of the components of glycolysis suggested that the glycolytic flux between glyceraldehyde 3-phosphate 
(GAP) and D-glycerate 1,3-bisphosphate (1,3-BPG) mediated by glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) may have been suppressed by vitamin C in the MCF7 and HT29 cells (Fig.  4a). To 
investigate whether metabolic changes induced by vitamin C were related to GAPDH, its expression was 
assessed using qPCR and was revealed to be unaffected by vitamin C or H2O2 treatment in MCF7 cells 
(Supplementary Figure 3). The treatment of U937 cells, which are derived from a human histiocytic 
lymphoma cell line, with H2O2, inactivates GAPDH via nicotinamide adenine dinucleotide (NAD) deple-
tion17. Therefore, we examined the intracellular NAD levels in vitamin C-treated MCF7 cells treated, and 
discovered the levels were decreased, and this effect was reversed by NAC (Fig.  4b,c). These data sug-
gest that high-dose vitamin C may inhibit glycolysis through NAD depletion. Moreover, we investigated 
whether vitamin C caused cell death through NAD depletion in MCF7 and HT29 cells. Our data showed 
that NAD suppressed the vitamin C-induced cell death in both cell lines (Fig. 4d). Taken together, these 
data suggest that vitamin C-induced oxidative stress inhibited the glycolytic flux by NAD depletion and 
consequently caused cell death.

Discussion
In this study, we examined the effects of vitamin C on the metabolomic profiles of different cancer cells. 
Our data showed that high-dose vitamin C was cytotoxic in the cancer cell lines investigated and altered 
the levels of various metabolites. Therefore, these results suggest that vitamin C may indeed have appli-
cations as a potential anticancer therapeutic agent.

Numerous laboratories have reported that high-dose vitamin C treatment induces cell death by H2O2 
generation6,10,12,16,20. In addition, H2O2 is involved in the maintenance of the redox status including the 
GSH/GSSG ratio and, is, therefore, expected to affect metabolism. In this study, we showed that levels 
of the upstream metabolites of glycolysis and TCA cycle were increased by vitamin C, while levels of 
those downstream were decreased. Additionally, ATP levels were decreased by vitamin C in the cancer 
cells tested, suggesting that vitamin C inhibited energy metabolism. We also found that cotreatment with 
NAC reversed the inhibitory effects of vitamin C on glycolysis, the TCA cycle, and the PPP; these results 
confirmed that vitamin C disrupted energy metabolism by H2O2 generation. Finally, we found that NAD 
depletion was critical for the observed effects on glycolytic metabolism and subsequent induction of cell 
death. Therefore, our results showed that vitamin C-induced oxidative stress inhibited energy metabo-
lism through NAD depletion and consequently caused cytotoxicity.

In this study, we found that the different cancer cell lines showed varying sensitivities to vitamin C 
and considered that this phenomenon may be regulated by multiple factors, such as redox system, trans-
porter expression, and hypoxia condition. For instance, we examined the cancer cell line death following 
treatment with H2O2 (data not shown) and discovered that its cytotoxicity was not correlated with that 
of vitamin C in these cell lines. Chen et al.6 reported no correlations between vitamin C-induced cell 
death and GSH, catalase, or GPx activities. Meanwhile, the vitamin C transporter was involved in the 
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sensitivity of breast cancer cells to vitamin C21,22. Furthermore, hypoxic conditions (1% O2) suppressed 
the cytotoxicity of vitamin C more in 60 cancer cell lines than normoxic conditions (21% O2) did23.

In this study, we report the first demonstration of vitamin C-induced changes in metabolomic pro-
files. Recent studies have shown that cancer cell metabolism may be a possible target for therapy. Cancer 
cells reprogram their metabolic processes according to the tumor microenvironment or cancer progres-
sion24–26. Previous studies have also reported that oncogenic signals such as Ras and c-Myc activity regu-
late the expression of metabolic enzymes, and thereby contribute to tumor development25,27,28. Moreover, 
cancer metabolism is characterized by abnormal energy production, known as the Warburg effect29–33. 
ATP generation in cancer cells shifts from oxidative phosphorylation to glycolysis, even under normoxic 
conditions. Therefore, glycolysis in cancer cells may be a potential target for cancer therapeutics. In our 
study, we found that vitamin C inhibited glycolysis by depleting NAD. Additionally, several reports have 
indicated that vitamin C therapy selectively kills cancer cells8,21. Therefore, since ATP production in 
cancer cells is more strongly dependent on glycolysis than it is in normal cells, the effects of vitamin C 
on survival may be more dramatic in cancer cells.

We found that vitamin C distinctly altered the pattern of the glycolytic metabolites. The 
GAPDH-mediated reaction between GAP and 1,3-BPG revealed that the upstream glycolytic metabo-
lites were increased while those downstream decreased, in response to vitamin C treatment. GAPDH 

Figure 3. Effects of N-acetyl cysteine (NAC) on energy metabolism in MCF7 cells treated with vitamin 
C. (a) Effects of NAC on metabolites of glycolysis, the TCA cycle, and the PPP in MCF7 cells stimulated 
with vitamin C. Heatmap depicts log2-transformed ratios of measured sample to control sample (None) 
concentrations. *P <  0.05,  **P <  0.01 (comparing lanes 3 and 4). (b) Effects of NAC on levels of AMP, ADP, 
ATP, GMP, GDP, GTP, and adenylate energy charge. Bar graphs indicate fold changes relative to control 
sample (None). Adenylate energy charge calculation: (ATP +  0.5 ×  ADP)/(ATP +  ADP +  AMP). Data are 
presented as means ±  SD of triplicate experiments. **P <  0.01. 
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expression reportedly increased in several tumor types including prostate, breast, and lung can-
cers34–36. Furthermore, GAPDH expression is upregulated via activation of the hypoxia-inducible fac-
tor (HIF-1) in breast cancer cells37. However, GAPDH expression in MCF7 cells was not increased 
following vitamin C treatment. Since the vitamin C-induced metabolic changes occurred within 1 h 
following treatment, the changes in the expression of metabolic enzymes may not be involved. On the 
other hand, vitamin C suppressed the NAD levels by generating H2O2 in MCF7 and HT29 cells, and 
vitamin C-induced cell death was reversed by NAD supplementation in both cell lines. These data 
suggest that NAD depletion may trigger vitamin C-induced cell death in cancer cells. In addition, 
Chen et al.6 hypothesized that vitamin C-induced H2O2 causes DNA damage, leading to enhanced 
PARP activation, which may consume NAD and deplete ATP7. Our metabolomics studies supported 
this mechanism.

In conclusion, our findings suggest that vitamin C promoted cancer cell death by inhibiting energy 
metabolism via NAD depletion, induced by H2O2 generation. Further investigations are required to elu-
cidate the specific mechanisms by which NAD depletion mediates the vitamin C-induced cytotoxicity. 
In addition, studies to confirm whether this pathway may be a potential target and thereby contribute to 
the improvement of cancer therapy would be expedient.

Figure 4. Nicotinamide adenine dinucleotide (NAD) depletion induced by vitamin C-induced H2O2 
in MCF7 cells. (a) Metabolite map of glycolysis. Colors of metabolites indicate significant differences (red, 
upregulated; green, downregulated). Conversion of GAP to 1,3- BPG mediated by GAPDH. (b) NAD levels 
were decreased by vitamin C in MCF7 (left) and HT29 cells (right) and were determined using CE-TOFMS. 
Bar graphs indicate fold changes relative to control sample (None). (c) Effects of NAC on levels of NAD in 
MCF7 cells. Bar graphs show metabolite levels relative to those of control (None). (d) Effects of NAD on 
viability of MCF7 (left) and HT29 (right) cells determined by MTT assay in both cell lines treated without 
or with vitamin C and NAD. Data are presented as means ±  SD of triplicate experiments, **P <  0.01.
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Methods
Regents and cell culture. Vitamin C, NAC, GSH, and NAD were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). Human skin epidermoid carcinoma (A-431), human breast mammary gland 
adenocarcinoma (MCF7), and human colon colorectal adenocarcinoma (HT29) cells were obtained 
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Human cervix carcinoma 
(HeLa) cells were obtained from the Japanese Collection of Research Bioresources (Tokyo, Japan), while 
human pancreas adenocarcinoma (Panc-1) cells were purchased from the RIKEN BioResource Center 
(Tsukuba, Japan). All the cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, Nissui 
Pharmaceuticals Co., Ltd., Tokyo, Japan) supplemented with 10% fetal bovine serum, 100 U/mL peni-
cillin, 100 mg/mL streptomycin, and 0.25 mg/mL amphotericin B at 37°C in a humidified atmosphere 
with 5% CO2.

Cell viability assay. The cell viability was measured using the MTT assay as follows. The cells 
(7.5 ×  103) were seeded in each well of a 96-well plate and incubated for 24 h. Then, vitamin C was 
added and the cells were further incubated for 2 h, washed, and then cultured for an additional 46 h in 
DMEM in the absence of vitamin C. The cells were pretreated with NAC, GSH, and NAD 1 h prior to 
the incubation with vitamin C. Then, 50 μ L of the MTT reagent (2 mg/mL in phosphate-buffered saline, 
PBS) was added to each well, and the plates were incubated for an additional 2 h. The resulting formazan 
crystals were dissolved in 100 μ L of dimethyl sulfoxide (DMSO) after the culture medium had been aspi-
rate nm using a TECAN microplate reader with Magellan software (Männedorf, Switzerland).

qPCR analysis. RNA was extracted from vitamin C-treated MCF7 cells using TRIzol (Life Technologies, 
Gaithersburg, MD, USA) according to the manufacturer’s protocol, and 1 μ g was reverse transcribed using 
a first-strand cDNA synthesis kit (ReverTra Ace α , Toyobo Co., Ltd., Osaka, Japan). The qPCR was per-
formed using the SYBR premix Ex Taq (Takara, Shiga, Japan) on a StepOne Plus Real-Time PCR system 
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Quantification 
was performed using the Δ Δ Ct method, and RPL27 expression used as an internal reference. The melt 
curve analysis confirmed that all the qPCR products were generated in the form of double-stranded 
DNA. The primers used were as follows: HO-1, 5′ -CGGGCCAGCAACAAAGTGCAAG-3′  (sense)  
and 5′ -GTGTAAGGACCCATCGGAGAAG-3′  (antisense) and RPL27, 5′ -CTGTCGTCAATAAGGATG 
TCT-3′  (sense) and 5′ -CTTGTTCTTGCCTGTCTTGT-3′  (antisense).

Metabolomics experiment. Intracellular metabolites were measured in MCF7 and HT29 cells 
treated with vitamin C using CE-TOFMS (Agilent Technologies, Palo Alto, CA, USA) as previously 
described26,38. In brief, the MCF7 and HT29 cells were seeded at a density of 4 ×  105 cells/well in 6-well 
plates. The cells were treated with vitamin C for 1 h, and then washed twice with 5% mannitol. Then, 
600 μ L of methanol containing the internal standards (25 μ M each of methionine sulfone, ethane sul-
fonic acid, and D-Camphor-10-sulfonic acid) was added. The homogenate was mixed with 200 μ L of 
Milli-Q water and 400 μ L of chloroform. After centrifugation, the separated methanol-water layer was 
ultrafiltered using a Millipore 5-kDa cut-off filter to remove the proteins. The filtrate was lyophilized, dis-
solved in 25 μ L of Milli-Q water and analyzed using CE-TOMS. The data obtained were analyzed using 
MasterHands39. The metabolite identities were determined by matching their m/z values and migration 
times with those of their standard compounds.

Statistical analysis. The data were analyzed using the GraphPad Prism v 5.0 software (La Jolla, CA, 
USA). The statistical analysis of the experimental results was performed using the one-way analysis 
of variance (ANOVA). Data are presented as means ±  standard deviation (SD) and differences with 
P-values <  0.05 were considered statistically significant.
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